fit and finish 101
This commit is contained in:
parent
5c6087899a
commit
ae58331e4e
4
.gitignore
vendored
Normal file
4
.gitignore
vendored
Normal file
@ -0,0 +1,4 @@
|
||||
quickstart/101-machine-learning/.terraform.lock.hcl
|
||||
quickstart/101-machine-learning/.terraform/providers/registry.terraform.io/hashicorp/azurerm/2.76.0/windows_amd64/terraform-provider-azurerm_v2.76.0_x5.exe
|
||||
quickstart/101-machine-learning/terraform.tfstate
|
||||
quickstart/101-machine-learning/demo.tfplan
|
@ -8,7 +8,7 @@ resource "azurerm_machine_learning_compute_instance" "compute_instance" {
|
||||
|
||||
# Compute Cluster
|
||||
resource "azurerm_machine_learning_compute_cluster" "compute" {
|
||||
name = "default-compute"
|
||||
name = "cpu-cluster"
|
||||
location = azurerm_resource_group.default.location
|
||||
machine_learning_workspace_id = azurerm_machine_learning_workspace.default.id
|
||||
vm_priority = "Dedicated"
|
||||
@ -21,7 +21,7 @@ resource "azurerm_machine_learning_compute_cluster" "compute" {
|
||||
scale_settings {
|
||||
min_node_count = 0
|
||||
max_node_count = 3
|
||||
scale_down_nodes_after_idle_duration = "PT10M" # 10 minutes
|
||||
scale_down_nodes_after_idle_duration = "PT15M" # 15 minutes
|
||||
}
|
||||
|
||||
}
|
@ -31,6 +31,8 @@ Network connectivity to the workspace is allowed over public endpoints, making t
|
||||
## Usage
|
||||
|
||||
```bash
|
||||
terraform init
|
||||
|
||||
terraform plan -var name=azureml567 -out demo.tfplan
|
||||
|
||||
terraform apply "demo.tfplan"
|
||||
|
@ -6,7 +6,7 @@ and its associated resources including Azure Key Vault, Azure Storage, Azure App
|
||||
In addition to these core services, this configuration specifies any networking components that are required to set up Azure Machine Learning
|
||||
for private network connectivity using [Azure Private Link](https://docs.microsoft.com/en-us/azure/private-link/).
|
||||
|
||||
This configuration describes the minimal set of resources you require to get started with Azure Machine Learning in a network-isolated set-up.
|
||||
This configuration describes the minimal set of resources you require to get started with Azure Machine Learning in a network-isolated set-up. This configuration creates new network components. If you want to reuse existing network components, see [202 example](../201-machine-learning-moderately-secure/readme.md).
|
||||
|
||||
## Resources
|
||||
|
||||
|
@ -169,7 +169,7 @@ resource "azurerm_machine_learning_compute_cluster" "image-builder" {
|
||||
|
||||
scale_settings {
|
||||
min_node_count = 0
|
||||
max_node_count = 1
|
||||
max_node_count = 3
|
||||
scale_down_nodes_after_idle_duration = "PT15M" # 15 minutes
|
||||
}
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
# Azure Machine Learning workspace (moderately secure network set up)
|
||||
# Azure Machine Learning workspace (moderately secure network set up - existing virtual network)
|
||||
|
||||
This deployment configuration specifies an [Azure Machine Learning workspace](https://docs.microsoft.com/en-us/azure/machine-learning/concept-workspace),
|
||||
and its associated resources including Azure Key Vault, Azure Storage, Azure Application Insights and Azure Container Registry.
|
||||
@ -6,9 +6,7 @@ and its associated resources including Azure Key Vault, Azure Storage, Azure App
|
||||
In addition to these core services, this configuration specifies any networking components that are required to set up Azure Machine Learning
|
||||
for private network connectivity using [Azure Private Link](https://docs.microsoft.com/en-us/azure/private-link/).
|
||||
|
||||
This configuration describes the minimal set of resources you require to get started with Azure Machine Learning in a network-isolated set-up.
|
||||
|
||||
To learn more about security configurations in Azure Machine Learning, see [Enterprise security and governance for Azure Machine Learning](https://docs.microsoft.com/en-us/azure/machine-learning/concept-enterprise-security).
|
||||
This configuration describes the minimal set of resources you require to get started with Azure Machine Learning in a network-isolated set-up. This configurations assumes that you have existing network components to reuse. The [201 example](../201-machine-learning-moderately-secure/readme.md), alternatively creates new network components.
|
||||
|
||||
## Resources
|
||||
|
||||
@ -51,6 +49,8 @@ To learn more about security configurations in Azure Machine Learning, see [Ente
|
||||
## Usage
|
||||
|
||||
```bash
|
||||
terraform init
|
||||
|
||||
terraform plan -var name=azureml567 -out demo.tfplan
|
||||
|
||||
terraform apply "demo.tfplan"
|
||||
|
@ -172,7 +172,7 @@ resource "azurerm_machine_learning_compute_cluster" "image-builder" {
|
||||
|
||||
scale_settings {
|
||||
min_node_count = 0
|
||||
max_node_count = 1
|
||||
max_node_count = 3
|
||||
scale_down_nodes_after_idle_duration = "PT15M" # 15 minutes
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user